Making High-Performance Computing Essential to the Formulation Industry

Breanndan O Conchuir Research Staff Member IBM Research Europe

Breanndan.conchuir@ibm.com

Context

 Technology concept formulated
 Technology demonstrated in relevant environment

Hartree Chemistry

Research Goal

Computational results representative of experimental measurements

Hartree Chemistry

Research Goal

Computational results representative of experimental measurements

Business Need

- Better faster cheaper
 product development
- Improved product understanding
- Development for sustainability

How computational methods are traditionally consumed in industry

An alternate model for consuming computational methods in industry

Simulation Methodology

Dissipative Particle Dynamics (DPD)

Parameterisation

Bespoke DPD Force-Field Parameterisation

- Parameterisation is the process by which a force field is fit to reproduce known data
- This is a pre-requisite to an accurate, informative and trustable simulation.
- We are currently building automated methods to parameterise DPD force fields

Bespoke DPD Force-Field Parameterisation

- Parameterisation is the process by which a force field is fit to reproduce known data
- This is a pre-requisite to an accurate, informative and trustable simulation.
- We are currently building automated methods to parameterise DPD force fields
- Local and global optimisation methods are being explored including gradient descent and AI enhanced methods such as Bayesian optimisation
- Generate tailor-made models for industrial systems using relevant or easily attainable experimental data – top-down or onthe-fly

McDonagh et al. Journal of Chemical Information and Modelling, 59, 4278 (2019)

Johnston et al. Journal of Physical Chemistry B, (2020) (Accepted)

12

Virtual Experiments

High Shear Rheology Simulations

- Lee-Edwards shearing boundary wall conditions
- Clustering algorithm
- Timeseries equilibration metrics

Simulation Output

- Micelle statistics, size and shape distributions
- Viscosity, stress, shear & micelle orientation measurements

Concentration Scans

Conchuir et al. J. Chem. Theory Comput. 16, 7, 4588 (2020)

Patterned Surface Adsorption

Rheology in Confined Environments

Ternary Phase Diagrams

Predicting ternary phase diagram from molecular simulations

We use DPD as a fast efficient simulation methodology to predict the diagram

We also apply MD to elucidate the molecular scale phenomena

Mesoscopic Phase Detection

- Developing methods for detecting different mesoscopic liquid phases and aggregate shapes.
- Using DPD to access the scales of mesoscopic structures
- A phase is identified by applying shape metrics to aggregates.

Biosurfactants

- Industry needs biosurfactants: Eco-friendly & sustainable
- Currently ranking a variety of MD force fields for simulating sugars

Nanoparticle Design

- Design functionalised nanoparticles for controlled delivery mechanisms
- Generate a variety of nano particles and investigate their transport properties

Consumable Software

Formulation Applications

Real-time data visualisation

Formulation Applications

Inclusive

• Scalable

Robust

- Data-flows
- Platform agnostic
 Cloud na
- Cloud native

Real-time data visualisation

Industrial Collaborations

July 1, 2020 | Written by: Breanndan Conchuir, James McDonagh , and Michael Johnston

Categorized: Chemistry | IBM Research - UK | STFC-Hartree Center

Share this post:

🖬 in 🖌

Think back to your chemistry 101 class where you were fumbling around with test-tubes and pipettes attempting to unlock the secrets of Nature. Such experiments were quick to construct and straightforward to complete.

However, real industrial chemical research is not so simple. Scientists need to perform a lot of complicated and laborious formulation chemistry experiments in order to design many of the ubiquitous products which we use daily.

Computational Formulation for Polymers

(Credit: Dreamstime)

15 June 2020

Researchers based at the STFC Hartree[®] Centre worked with Johnson Matthey, using computational techniques to automate and accelerate the process of identifying properties of novel chemical formulations.

Challenge

Chemical formulation is at the heart of many manufacturing processes. It is critical in areas as diverse as medication, personal care products and engine oils. Typically, formulation research is carried out experimentally in a laboratory. Johnson Matthey were looking for a way to automatically predict the properties of novel formulations, generating strong reproducible insights in to product development. These computational tools would enable digital pre-screening of novel formulations, guiding the decision making behind which new formulations should be prioritised for expensive laboratory testing.

Summary

The computer-aided formulation ecosystem

Consumable Interfaces

- *Capability*: Allow non-experts to easily run complex experiments on HPC systems
- *Exploitation*: Appliances created by researchers can be vended via mobile or web interfaces.

The computer-aided formulation ecosystem

The computer-aided formulation ecosystem

	_		Υ.	
	-	-	÷.,	
	-		-	