

Microstructure identification in BPANI food can-coating systems

A. Ambarkar, S. Edmondson, K.J. van den Berg

Microstructure identification in BPANI food can-coating systems

The University of Manchester

- Motivation: Bisphenol A non-intended (BPAni) coating system for food cans offer sustainable replacement over epoxy based coatings but comprise on the shelf life.
- Objective: To use the current understanding of organic coating at the UoM and their expertise in advance characterization techniques in studying industrial grade complex formulation BPAni food can coating,

Microstructural guidance approach: As polymer system show high structure-toproperty correlation, a good understanding of coating microstructure can be leverage to improve coating performance

BPANI Coatings Systems

Vitalure [®] BPANI Coatings		
Variants	Chemical Resistant Type (CRT Coating)	Flexible Type (FT Coating)
Uses	Internal can coatings - 3 piece cans (standard ends and bodies)	Internal can coatings - 3 piece cans (standard ends and bodies, easy open ends)
Binder	CRT Polyester	FT Polyester
Formulation	solvent-based Crosslinkers- phenolic resin, benzoguanamine resin	solvent-based Crosslinkers- phenolic resin, benzoguanamine resin, isocyanate crosslinker (blocked IPDI)
Substrate	Electrolytic tinplated steel (ETP Steel)	Electrolytic tinplated steel (ETP Steel)
Cure Condition	200° C for 10 min at PMT (peak metal temperature)	200° C for 10 min at PMT (peak metal temperature)
Chemical resistant	Suitable for all types of food very acidic – very alkaline food	Suitable for mild acidic – alkaline food
Flexibility	Not suitable for easy open ends	Suitable for easy open end

Adhesion image: Force of adhesion is a quantity directly measured from the forcedistance curves. Gives a indication of local mechanical properties – local hardness. Higher adhesion → Soft surface Lower adhesion → Hard surface

Preliminary microstructural analysis by Atomic Force Microscopy (AFM)

The University of Manchester

Adhesion image profile analysis

In CRT coating, adhesion values average around a single value inside the bead or outside the bead.

In FT coating, adhesion values average around two different values, each corresponding a "hard phase" and a "soft phase"

Thermal analysis supporting microstructure analysis

The University of Manchester

Thermal analysis support microscopy findings i.e. CRT coatings are homogeneous and FT coatings show two phases

Root cause of phase separation

Understanding phase separation in FT coting using Model Systems

Binary Model System for Polyester-Isocyanate

Binary Model System for Polyester-Isocyanate

The University of Manchester

Polyester-Isocyanate make homogenous coatings

Isocyanate and polyester are compatible, unreacted isocyanate remains souble in polyester

Binary Model System for Polyester-Phenolic Polyester-Benzoguanamine

6

Nodular phase/Globular phase -mechanical properties (AFM PeakForce QNM)

Nodular phase/Globular phase - chemical properties (bulk FTIR)

Phase Diagram Polyester-Isocyanate-Phenolic

AkzoNobel MANCHESTER 1824

Nodular phase/Globular phase chemical properties - **AkzoNobel** *AFM-IR Technique* MANCHESTER

- Thermal expansion of the sample in response to IR absorbance causes the cantilever to oscillate at it's resonance frequency
- The oscillation amplitude of the cantilever is directly proportional to the amount of light absorbed and this in turn is directly proportional to the absorption coefficient.

- The transient thermal expansion and relaxation occur at a rate faster than the feedback loop of the AFM measurement
- Contact mode AFM topographical information can be extracted simultaneously

Nodular phase/Globular phase chemical properties -Peak assignment

Difference Spectra with Polyester Spectra

The University of Manchester

Peak assignment for of Isocyanate from FTIR bulk Spectra

subtracted from Polyester-Isocyanate Amide I C=O from uncrosslinked isocyanate 1688 cm⁻¹ N-H stretch 2.08 2.06 C-N stretch C=02.04 ε-caprolactum 2.02 1444 cm⁻¹ 2 Absorbance 1650 cm⁻¹ 1.98 1530 cm⁻¹ 1.96 1.94 1.92 1.9 1.88 1.86 1800 1700 1300 1200 1600 1500 1400 1100 1000 Wavenumbers [1/cm]

Peak assignment for of Phenolic from FTIR bulk Spectra

Difference Spectra with Polyester & Isocyanate Spectra subtracted from Polyester-Isocyanate-Phenolic

Homogeneous sample chemical properties - AFM-IR results: Local spectra beyond diffraction limit

Absorbance

Nodular phase chemical properties - AFM-IR Local spectra beyond diffraction limit

Nodular phase chemical properties - AFM-IR Local spectra beyond diffraction limit

Nodular phase chemical properties - AFM-IR Local spectra beyond diffraction limit

- This indicate that nodules are formed from phenoliccrosslinked-with-isocyanate rich-phase that phase separate as the hard phase from the soft continuous phase.
- Comparable to segmented PUs where
- soft segment \rightarrow linear/long-chained polyester
- hard segment → chain-extenders (short chained polyols) crosslinked with isocyanate
- The nodules shows all the characteristic peak of phenolic & isocyanate
- 1710 cm⁻¹ (C=O from phenolic crosslinked with isocyanate)
- 1483 cm⁻¹ & 1443 cm⁻¹ (methylene from phenolic and C-N stretches from isocyanate

Globular phase chemical properties - AFM-IR Local spectra beyond diffraction limit

Understanding Phase separation in full formulation FT coatings

The University of Manchester

 Difference Spectra from bulk FTIR and coating shows gradual increase in peak at 1710 cm⁻¹ and decrease in 1688 cm⁻¹ at full cure.

Two phased morphology observed only when cured above deblocking temperature of IPDI

0.05

x [um]

0.05

0.10

0.15 x [um]

Conclusions of microstructural identification

- In FT coating the phase separation stems from incompatibility between linear polyester and aromatic rich branched phenolic/benzoguanamine and also from stoichiometric imbalance
- In binary system of polyester-isocyanate, isocyanate does not cause phase separation, any stoichiometric excess of isocyanate remains dissolved in the bulk.
- □ In ternary system of polyester-isocyanate-phenolic, low stoichiometry of phenolic make homogenous coating
- In ternary system of polyester-isocyanate-phenolic, moderate stoichiometry of phenolic (above a certain threshold concentration) produces nodular phases which also make up "hard phase" phase separating from the "soft bulk phase"
- □ The chemical identification using AFM-IR technique shows nodular phase are phenolic crosslinked with isocyanate rich phase.
- The properties of nodular morphology shows good correlation with two phase morphology in FT coatings.
- A higher stoichiometry of phenolic will produce globular domains that are product of self-condensation between phenolic. This phase is less stiffer than the nodular phase.

The University of Manchester

Thank you for your attention!

Questions?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721451

