5. Conclusions and future work

ELE UNIVERSITY OF Formulating stratified films: exploiting diffusion and diffusiophoresis *Email: crr34@cam.ac.uk* **Clare R. Rees-Zimmerman & Alex F. Routh**

• For components 1 and 2, the conservation equation for the volume fraction ϕ_i of component *i* is

> $\partial\boldsymbol{\phi_i}$ ∂t $+ \nabla \cdot N_i = 0.$

• There are contributions to the flux N_i due to diffusion and diffusiophoresis (DP):

 $N_{2}^{\rm DP} = -\frac{3\phi_{1}\phi_{2}(1-\phi_{2})K(\phi_{1},\phi_{2})}{8\pi n}$ $8\pi\eta$ R_{DP}^2 R_1^3 $\frac{\partial P}{\partial 3}$ kT $\nabla \ln \phi_1$.

3. Governing equations

Future work: interactions

Figure 1: Schematic of the drying of a film containing two types of particles.

Conservation equation

• $K(\phi_1,\phi_2)$ accounts for hydrodynamic effects.

This poster explores the relative importance of diffusion and diffusiophoresis in affecting particle arrangement.

- A variety of particle arrangements in dried films has been seen experimentally, including a thin layer of small particles at the top surface. However, it is not understood why this would occur.
- The motivation for understanding this is the desire to engineer the drying process such that expensive components are only located where they are required.
-

Small particles at the

- Diffusiophoresis has been suggested as an explanation of the accumulation of small particles on the top surface.
- This is relevant in a mixture of small (R_1) and large particles (R_2) , when the small particles are excluded from a layer of solvent of thickness R_{DP} around each of the large particles.

Preliminary result: Small-on-top stratification is promoted by attractive small particle interactions and repulsive large particle interactions.

Experiments suggest that interactions affect particle arrangements, so these will be added to the chemical potential expressions.

• The Gibbs-Duhem equation relates the chemical potentials in the system $(\mu_i =$ chemical potential, $n_i =$ number density of component i , s = solvent):

 $n_1 \nabla \mu_1 + n_2 \nabla \mu_2 + n_s \nabla \mu_s = 0.$

- **Scaling:** Both diffusion and diffusiophoresis are important.
- **Without diffusiophoresis:** Larger diffusive flux of the smaller particles leads to accumulation of the larger particles at the top surface.
- **With diffusiophoresis:** Increasing the strength of diffusiophoresis results in more small particles at the top surface.

• An expression, valid up to closepacking, relates μ_s to the osmotic pressure, Π (kT = thermal energy, $Z(\phi_1,\phi_2)$ = compressibility):

> $\Pi =$ $\boldsymbol{\phi}_1$ 4 $\frac{1}{3}\pi R_1^3$ $\frac{1}{3}$ + $\boldsymbol{\phi}_2$ 4 $\frac{\varphi_2}{\pi R_2^3}$ $kTZ(\phi_1, \phi_2)$.

2. Why include diffusiophoresis?

Figure 3: Schematic of the exclusion zones around the larger particles, which give rise to diffusiophoresis.

*Figure 4: Model results without (left) and with (centre and right) diffusiophoresis at different values of R*_{DP}.

The model uses $K(\phi_1, \phi_2) = (1 - \phi_1 - \phi_2)^{6.55}$ and $Z(\phi_1, \phi_2) = (\phi_m - \phi_1 - \phi_2)^{-1}$.

an accumulation of small particles at the top surface (Atmuri et al., 2012).

Figure 5: AFM image of a dried polystyrene latex film at pH 5. At higher pH, there were fewer large particles the top surface (Atmuri et al., 2012).

Unanswered questions

In order to run the model up to close-packing, suitable expressions need to be found for:

Conclusions

Acknowledgement Oppenheimer studentship for funding

Extension to concentrated solution