
Supramolecular Materials for Inkjet Printing: Self-Assembling Polymer Networks

Lewis R. Hart,^a Josephine L. Harries,^b Barnaby W. Greenland,^c Howard M. Colquhoun^a and Wayne Hayes^a

^aDepartment of Chemistry, University of Reading, Reading, RG6 6AD, U.K. ^bDomino UK Ltd, Trafalgar Way, Bar Hill, Cambridge, CB23 8TU, U.K. ^cThe Reading School of Pharmacy, University of Reading, Reading, RG6 6AD, U.K.

I.r.hart@reading.ac.uk

Electronically complementary, low molecular weight, low viscosity polymers that can self-assemble through tuneable π-π stacking interactions have been developed for inkjet printing applications.¹ To this end, three printing techniques have been used to successfully deposit supramolecular materials, resulting in pseudo facile printing of high molecular weight polymer networks. overprinting the Sequential of

Scheme 1: Overprinting of a π -electron rich polymer with a π -electron deficient polymer to afford a coloured supramolecular network on the substrate surface

complementary components resulted in supramolecular network formation (Scheme 1) through complexation of π -electron rich polyaromatic chain-ends in one polymer with π -electron deficient chain-folding residues in a second polymer.² The complementary π - π stacked polymer blends generated strongly coloured materials as a result of charge-transfer absorption bands in the visible spectrum, potentially negating the need for pigments or dyes in the ink formulation (Figure 1). Piezoelectric printing techniques were employed in a proof-of-concept study to allow

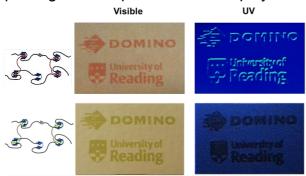


Figure 1: Images of the overprinted pyrenyl (top) and perylenyl (bottom) polymer blends under visible and short wavelength UV light

characterisation the materials of deposited, whilst a thermal inkjet printer adapted with imaging software enabled in situ analysis of the ink-drops, and of physical properties. their Finally. printing continuous inkjet allowed greater volumes of material to be deposited, on a variety of different substrate surfaces, demonstrating the utility and versatility of this novel type of ink for industrial applications.

References

- 1. L. R. Hart *et al.* Supramolecular materials for Inkjet printing: Self-Assembling Polymer Networks, *submitted for publication*, **2015**.
- 2. L. R. Hart et al., Polym. Chem. 2014, 5, 3680–3688.