Molecular Modelling Metered Dose Inhaler Suspension Formulations

Reading Guide:

Each slide is a different section Zoom into each panel Read along from left to right

Author: Vivian Walter Barron

pm13vb@leeds.ac.uk

Supervisors: Robert B. Hammond, Kevin J. Roberts, Hien Nguyen, Alex Slowey[†], Darragh Murnane^{*}

School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK [†] 3M United Kingdom, 10 Bakewell Road, Loughborough, Leicestershire, LE11 5RB, UK [¢] Centre for Topical Drug Delivery and Toxicology, University of Hertfordshire, Hatfield AL10 9AB, UK

Engineering and Physical Sciences Research Council

Centre for Doctoral Training in Complex Particulate Products and Processes

1. Introduction to Project

CONTEXT

- Suspension formulations contain four key components
- Molecular modelling provides the ability to model specific surfaces of a crystalline particle
- Understanding interactions between different materials can potentially aid formulation development

BACKGROUND

- Molecules are represented as spherical atoms connected by springs
- Atoms are assigned point charges and force fields calculate potential energy
- In crystallography molecular positions are specified relative to their unit cell
- This is used to define planes in the bulk structure

THIS POSTER

- Phases must be simulated and validated individually before being combined
- This poster shows validation of fluticasone propionate's (FP) solid crystal structure
- Also, validation of liquid propellant HFA-134a

2. Solid State of Fluticasone Propionate

METHOD

- FP's crystal structure data came from the DAXYUX entry¹
- Hydrogen positions were optimised and point charges assigned using AM1 method within MOPAC²
- Program habit98³ calculated interaction energies using generic force fields Dreiding⁴ and Tripos 5.2⁵

MORPHOLOGY VALIDATION

- In this model, each face's growth rate was proportional to attachment energy
- Both force fields predicted a morphology that resembled the hexagonal profile of FP crystals from slow evaporation in methanol

SURFACE CHEMISTRY

- Morphology model shows the chemistry of each face
- (100) face exposes the hydrogen bond accepting O1 atom
- Large cavities between molecules

3. Liquid Propellant HFA 134a

METHOD

- 463 HFA-134a molecules were simulated in a cubic box using molecular dynamics code DL_Poly 4.09⁶
- Atomic point charges came from the force fields being tested; OPLS⁷ and PCFF⁸
- Volume could change with conditions of constant target temperature and pressure; ranging from 263 to 323 K and 5.6 atm, respectively
- Equilibration lasted 500 ps and sampling 1.2 ns

VALIDATION

- Thermal expansion was compared to physical values from the Peng-Robinson equation of state
- It showed a difference in density of +/-10 % for the PCFF and OPLS force fields respectively

STRUCTURE OF LIQUID

- Radial distribution function (RDF) of PCFF simulations show higher peaks at lower temperatures
- It also resembled a previous Monte Carlo simulation⁹ which further validates the results

4. Conclusion and Future Work

- Molecular models of the solid and liquid phase were validated against physical values
- The different chemistry of FP's crystal surfaces was highlighted and structure of liquid HFA-134a was observed with an RDF plot
- The two phases will be combined to measure the free energy of wetting of different faces
- Then, further work will use this method to look at other materials in formulations

5. References

- 1. Cejka, J., Kratochvfl, B., Jegorov, A. & F, K. Crystal structure of fluticasone propionate, C25H31F3O5S. *Z Krist.* 220, 143–144 (2005).
- 2. Stewart JJP. MOPAC: A semiempirical molecular orbital program. *J Comput Aided Mol Des.* 4, 1–103 (1990).
- 3. Clydesdale, G., Roberts, K. J. & Docherty, R. HABIT95 A program for predicting the morphology of molecular crystals as a function of the growth environment. *J. Cryst. Growth* 166, 78–83 (1996).
- 4. Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING: A generic force field for molecular simulations. *J. Phys. Chem.* 94, 8897–8909 (1990).
- 5. Matthew, C., Richard III, D. C. & Nicole Van, O. Validation of the general purpose tripos 5.2 force field. *J. Comput. Chem.* 10, 982–1012 (1989).
- 6. Todorov IT, Smith W, Trachenko K, Dove MT. DL_POLY_3: New dimensions in molecular dynamics simulations via massive parallelism. *J Mater Chem.* 16, 1911–8 (2006).
- Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 118, 11225–36 (1996).
- 8. Sun H. Ab Initio Calculations and Force Field Development for Computer Simulation of Polysilanes. Macromolecules. 28, 701–12 (1995).
- 9. H. Do, R. J. Wheatley, & J. D. Hirst, Microscopic structure of liquid 1-1-1-2-tetrafluoroethane (R134a) from Monte Carlo simulation. *Physical Chemistry Chemical Physics*. 12, 13266–13272 (2010).