School of Chemical and Process Engineering FACULTY OF ENGINEERING

From Droplets to Particles methods, insights and prediction

Andrew Bayly

a.e.bayly@leeds.ac.uk

Who did the work!

- Leeds: Wael Ebrahim, Karrar Al-Dirawi, Muzammil Ali, Arron Jones, Sam Lister
- Bristol: Jonathan Reid, Florence Gregson, Jim Walker, Dan Hardy, Justice Archer, Joshua Robinson, Patrick Royall
- Durham: Colin Bain, Lisong Yang, Jack Goodall

Factors Controlling Structure

apour bubbl

Single Droplet Droplet interaction Process

Studying Droplet Drying and Crystallisation

Rapid Measurements of Evolving Morphology

A.E. Haddrell, G. Rovelli, D. Lewis, T. Church and J.P. Reid, 'Identifying time-dependent changes in the morphology of an individual aerosol particle from their light scattering patterns', AS&T (2019) in press

NaCI - Abrupt Crystallisation, Well-Defined Supersaturation

• Examination of concentration of solute and time at which crystallisation occurs shows high reproducibility.

Gregson, F. K. A., Robinson, J. F., Miles, R. E. H., Royall, C. P. & Reid, J. P. Drying Kinetics of Salt Solution Droplets: Water Evaporation Rates and Crystallization. J. Phys. Chem. B 123, 266–276 (2019).

Abrupt Crystallisation, Well-Defined Supersaturation

• Examination of concentration of solute and time at which crystallisation occurs shows high reproducibility.

Gregson, F. K. A., Robinson, J. F., Miles, R. E. H., Royall, C. P. & Reid, J. P. Drying Kinetics of Salt Solution Droplets: Water Evaporation Rates and Crystallization. J. Phys. Chem. B 123, 266–276 (2019).

Different Salt - NaNO3, Different Behaviour

NaCl, 20% by weight, 293 K, dry air NaNO₃, 20% by weight, 293 K, dry air

(133 droplets), 15% gas-phase moisture content, 293 K, Initial conc. 0.12 mass fraction

• Some droplets crystallise instantaneously while others reach a steady "equilibrium" size indefinitely.

Different Salt, Different Behaviour

• Some droplets crystallise instantaneously while others reach a steady "equilibrium" size indefinitely.

Dependence on Supersaturation/Drying RH

Morphologies in Falling Droplet Crystallisation

Add image of falling droplet

Morphologies in Falling Droplet Crystallisation

PARTICLE STRUCTURES FROM PILOT SCALE SPRAY DRYER

24% NaCl(aq.), 120 °C Procept Spray Dryer

Unusual structures

3-D hopper crystals

Manipulate Structure with Additives

15% Soln NaCl1% Maltodextrin200 degCProcept Dryer

30 µm

Manipulate Structure with Additives

15% NaCl1% Maltodextrin200 degCProcept Dryer

50 µm

Filament Drying Rig

UNIVERSITY OF LEEDS

Nucleation and surface movement

Figure 6.10: High Shutter Speed (2000fps) Images of SDD droplets of 15% NaCl Solution dried at 70°C

Figure 6.11: High Shutter Speed (2000fps) Images of SDD droplets of 24% NaCl Solution dried at 70°C

Hetrogeneous nucleation

Gravity

Capillary forces

Surface Growth

44s54s78s100sFigure 6.8: Images of SDD droplets of 24% NaCl Solution dried at 70°C - imaged using non-polarised
diffuse light. Images are labelled according to the time from start of drying.

Figure 6.9: Images of SDD droplets of 15% NaCl Solution dried at 70°C - imaged using polarised diffuse light. Images are labelled according to the time from start of drying.

Drying at High Temperatures

Bubble nucleation leads to mechanical deformation, puffing, and very significant changes in physical and functional properties

Droplet Drying History

The temperature history and morphological changes of a droplet in a spray dryer

Single Drop Drying Example

Sucrose – $T_{air} = 190^{\circ}$ C , 45 %, $d_{init} = 1.5$ mm inflation/defalation cycles

23

Silicate Solutions – particle size larger than drop size

SILICATE SOLUTION at 180°C, 6%, 17% and 45 % initial concentration

24

UNIVERSITY OF LEEDS

Material Dependence of Morphology Evolutions

UNIVERSITY OF LEEDS

Rupture mechanisms

2/3-D models of bubble growth in a droplet

Coupling with droplet motion with drying

UNIVERSITY OF LEEDS

Colloidal systems - Ti02 morphology

alumina-coated TiO₂ slurry 20%wt pH=8.4 (IEP)

alumina-coated TiO₂ slurry 20%wt pH=4.5 (non-IEP)

Dependence of Final Size on Drying Rate

University of BRISTOL

Spray Drying

Francia et al. (2016)

UNIVERSITY OF LEEDS

Collisions Outcomes and Regime Maps

$$B = \frac{2b}{d_s + d_l}$$

$$We = \frac{E_k}{E_s} = \frac{\rho d_s v_{rel}^2}{\sigma}$$

The Rig

UNIVERSITY OF LEEDS

HPMC Regime Maps

Type of liquid	ρ (kg m ⁻³)	σ (mN m ⁻¹)	μ (mPa s)
2% HPMC	998	46	2.8
4% HPMC	998	45.8	8.2
8% HPMC	997	45.72	28.4

$d = 360 \pm 10 \mu \mathrm{m}$

HPMC: hydroxypropyl methylcellulose (polymer)

Al-Dirawi, K.H. and Bayly, A.E., 2019. A new model for the bouncing regime boundary in binary droplet collisions. *Physics of Fluids*, *31*(2), p.027105.

HPMC Regime Maps – equal size and viscosity

- Typical regime maps seen for all viscosities
- Viscosity moves the boundaries, most noticeably loss of reflexive separation in high viscosity case
- Literature models capture the boundaries

Bouncing

Increasing the viscosity decreases the deformation and hence promotes coalescence.

The viscosity difference between the colliding droplet causes deformation difference which in turns leads to an intermediate critical *We* compared to the identical cases.

Stretching separation

Uniform ligament

间 UNIVERSITY OF LEEDS

Stretching separation

UNIVERSITY OF LEEDS

9

Stretching separation (coloured images)

10

0

- The ligaments are mainly from the lower viscosity droplet.
- ✤ There is no significant mixing between the colliding droplets

Reflexive separation (different viscosities)

- The reflexive separation has an intermediate *We* compared to the identical cases.
- There is a mixing in the ligaments but the reflexed droplets have no mixing.
- ✤ After separation:
 - small droplet with low viscosity;
 - large droplet with mixed droplet;

Different size collisions of 2%HPMC

UNIVERSITY OF LEEDS

Bouncing

Coalescence and Stretching Separation

Reflexive separation

Different size, different viscosity

Conclusions

Collisions of droplets with Identical and non-identical viscosity have been conducted experimentally.

Identical viscosity:

- Increasing the viscosity shifts the bouncing regime towards lower We.
- Increasing the viscosity shifts the stretching separation regime towards higher B.
- Increasing the viscosity shifts the reflexive separation regime towards higher We.

Non-Identical viscosity:

- The boundaries of bouncing and reflexive separation take an intermediate position.
- The boundaries of the stretching separation is comparable to the identical case of the low viscosity droplet.

Evaporative Drying of Droplets and the Formation of Micro-structured and Functional Particles and Films

CONTACT DYNAMICS OF DRYING DROPLETS

Motion controlled via motorized linear stage

Control of

- position,
- 'collision' velocity,
- contact time

CONTACT DYNAMICS OF DRYING DROPLETS SUMMER PROJECT

- Mechanisms identified and characterized.
- Behaviours mapped

Contours of Air Flow Profile

Contours of Velocity Magnitude (m/s) (Time=6.1343e+01)

<u>Contours of LES predicted air flow profiles</u> <u>coloured by velocity magnitude</u>

Spray Drying Modelling

- > Spray drying towers involve complex, 3-D turbulent gas flow
- Modelling of gas flow is critical to successful prediction
- Computational Fluid Dynamics (CFD) modelling is the preferred choice

Trajectories coloured by Particle Temperature

50

Improving Drying Models

- Historically simplified models \bullet have been used in CFD
- What impact does this have?
- Compare simplified approaches (CDC and REA) with full solution of diffusion equation

Diffusive transport equation in solute fixed coordinate system ٠

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial z} \left(D(u,T) C_s^2 r(t)^4 \frac{\partial u}{\partial z} \right)$$
(1)

Initial condition $(t \le 0)$:

(3) $0 \le z \le Z$ $u = u_{initial}$

Boundary conditions (t > 0):

$$\left. \frac{\partial u}{\partial z} \right|_{z=0} = 0 \tag{6}$$

(2)

$$z=0$$

 $r=0$
 $z=r_p$

D is solvent diffusivity

 $\partial z = C_s r(t)^2 \partial r$

where

(5)

 C_{*} is solute concentration

UNIVERSITY OF LEEDS

- is vapour concentration *C*...
- k is mass transfer coefficient
- is solvent mass fraction u

$$-D(u,T)C_s^2 r_p^2 \left(\frac{\partial u}{\partial z}\Big|_{z=Z}\right) = k(a_w C_{v,s} - C_{v,\infty}) = \frac{\partial M_l}{\partial t} / A_{drop}$$

Improving Drying Models

- Historically simplified models have been used in CFD
- What impact does this have?
- Compare simplified approaches (CDC and REA) with full solution of diffusion equation

Moisture Profile and Yield

- SIGNIFICANT DIFFERENCE BETWEEN DIFFUSION BASED MODEL AND SIMPLIFICATIONS
- IMPROVED VERSION OF CDC SHOWS POTENTIAL

1. Islam and Langrish (2010). Food Research International, vol. 43, pp. 46-56.

Summary

- Single Droplet: single particle methods developed give insights into solidification and structure formation mechanisms
- Droplet Interactions: Extended understanding of collision behavior on simplified and real systems, new models
- *Process:* Improvements to spray drying models bringing structure effects into the drying models

a.e.bayly@leeds.ac.uk

Thank you.

Questions?