R Pickering Emulsions using a Fumed Silica and a Silica Sol - The Effect of Microfluidization

Karin Persson, Jan-Willem Benjamins, Jens Sommertune and Isabel Mira, RISE Research Institutes of Sweden Bernard P Binks, Department of Chemistry and Biochemistry, University of Hull

Background

The ability of colloidal silica to stabilize nano-oil-in-water emulsions prepared using a Microfluidizer[®] has previously been demonstrated [1]. A vast amount of work has been performed and reported on fumed silica-stabilized emulsions. Nevertheless, the possibility to reduce the emulsion droplet size in these emulsions by means microfluidization has to our knowledge not been tested.

Morphology of Fumed Silica-stabilized Emulsions using Confocal Raman

Sample: 10 wt% squalene with fumed silica

The measurements were performed with a WITec alpha300 RAS system in combination with a 532 nm laser for excitation. -10°C cooling from below. 60x using a water immersion objective.

Objective: investigate the smallest emulsion droplet size attainable in fumed silicastabilized emulsions by means of microfluidization.

Materials

	Supplier	Comment
Levasil CC301	Nuyryon	Silica wt% 28
		Average particle size 7 nm
		2,5% ethanol
Fumed Silica	Wacker Chemie AG	Fumed silica powder, primary
		particle diameter is 25-30 nm.
Squalene	Sigma Aldrich	≥98%

Microfluidization

A M-110Y Microfluidizer processor (Microfluidics, USA), with a F2OY 75 μm interaction chamber (Y type) with a H30 Z 200 μm auxiliary chamber (Z type) placed inline and pressure of 600 bar was used.

Inlet Reservoir Product Product Product Interaction Product Interaction Chamber to 276 MPa (40,000 psi)

Emulsification using a Silica Sol (Reference system)

Emulsions stabilized with sols of hydrophobically - modified silica (Levasil CC301) had a droplet size of 0.092 μ m (volume mean diameter). No variations in droplet size were observed for at least a month (previous work indicates that these type of emulsions remain stable for years).

> The droplets are not spherical.

Freeze-thaw Stability of Silica-stabilizedd Emulsions

Emulsions stabilized with starch granules have been reported to exhibit high freezethaw stability [2].

The freeze-thaw stability of the fumed silica and Levasil CC301-stabilized emulsions was tested. The emulsions were placed in a freezer at -18°C for a week and allowed to thaw at RT before their size distribution was measured.

Deagglomeration of Fumed Silica

➤The Microfluidizer[®] was efficient for deagglomeration of fumed silica dispersion.

Low Pressure Out

CRYO-TEM of 5% oil nano emulsion stabilized with a silica sol. The scalebar is 200 nm. From previous work. Acknowledgement Jonas Gustafsson

Emulsification using Fumed Silica

Method 1) 10 wt% oil-in-water, pre-emulsification step, microfluidized for 30 min.

- Method 2) 5 wt% oil-in-water, silica pre-dispersed in microfluidizer, microfluidized for 30 min.
- Method 2 provides the most stable emulsion. Droplet size is constantly 2.5-20 μm between 1 week and 1 month.
- > Bimodal size distribution. The smaller peak may be silica.

The silica stabilized emulsions are not stable to freezing, and a significant increase in droplet size of the emulsions occurs.

Summary

Levasil CC301

- Levasil CC301 is a good stabilizer for nano-oil-in-water-emulsions.
- Emulsions with droplet size of 0.092 μm (volume mean diameter) were obtained with Levasil CC301.
- ✓ These emulsions are stable at least one month

Fumed Silica

- Fumed silica is good for stabilization of emulsions with droplets sizes larger than 2 μ, but it is not suitable for stabilization of nano-emulsions.
- Fumed silica can stabilize a 10% oil-in-water emulsions however, the droplet size of these are larger (2.5-10 μm), and they grow with time.
- Using less oil (5%) and pre-dispersing the fumed silica in the Microfluidizer results in an emulsions with a droplet size of 2.5-20 μm.

The 5% emulsion was stable for at least one month

Freezing

 \checkmark

The silica stabilized emulsions were not stable to freezing/thawing.

[1] Persson, K.H., Blute, I.A., Mira, I.C., Gustafsson, J. Creation of well-defined particle stabilized oil-in-water nanoemulsions, 2014, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 459, pp. 48-57.
[2] A Marefati et al. Colloids and Surfaces A: Physicohem. Eng. Aspects 436 (2013) 512-520

RISE RESEARCH INSTITUTES OF SWEDEN

Division Bioscience and Materials Surface, Process and Formulation CONTACT

Karin Persson, karin.persson@ri.se