

PARTICLE LEACHING FROM POLYMERIC COATINGS A Combined Experimental and Simulation Study

Eugenio Bonetti –AkzoNobel, Malmö, SE and CEAS, The University of Manchester, UK Ander Cervellera-Dominguez – AkzoNobel, Sassenheim, NED and School of Materials, The University of Manchester, UK Peter Visser – AkzoNobel, Sassenheim, NED Simon Gibbon – AkzoNobel, Felling, UK Professor Xiaorong Zhou – School o Materials, The University of Manchester, UK Flor R. Siperstein – CEAS, The University of Manchester, UK

> FORMULA X Manchester, UK

Introduction

Active corrosion protection by organic coatings in Aerospace

Corrosion in modern world

- Corrosion cost: 2.5 trillion US\$ 4% percent of the global Gross Domestic Product (GDP)
- 20-35% of this loss could have been saved by implementing better corrosion preventing practices. German, T. & Section, N. Corrosion news. 140 146 (2018).

In the aerospace industry corrosion impacts

- Cost
- Aircraft availability
- Safety
- Social

Organic coatings provide corrosion protection

FORMULA X

Manchester, UK

Key steps for corrosion inhibition via leaching

- 1. Water uptake
- 2. Dissolution of active pigment
- 3. Transport and delivery of active species through the polymeric matrix to de defect area
- 4. Fast, effective, and irreversible passivation

O Gharbi et al. Npj Materials Degradation, 2, 12 (2018)

October 1992, The Netherlands:

Fatigue corrosion cracking https://aviation-safety.net/database/record.php?id=19921004-2

April 1988, Hawaii: Fatigue corrosion cracking

https://faculty.up.edu/lulay/me401/aloha_flight_243_a_new_direction.pdf

H2020-MSCA-ITN-2016/721451

Introduction

Active corrosion protection by organic coatings in Aerospace

Challenge

Develop coatings that are:

- > Environmentally friendly
- Sustainable
- ➤ Efficient
- Cost effective

Approach

- > Replacing toxic chemicals (chromates)
- Use renewable materials
- > Understand and optimise performance
- > Minimise use of expensive materials

UNDERSTAND LEACHING OF INHIBITORS FROM ORGANIC COATINGS

UNDERSTAND THE RELATIONSHIP BETWEEN LEACHING AND PERFORMANCE

Introduction

Lithium leaching technology protection concept

3 5' Li Lithium Provide f**ast**, **effective**, and **irreversible** corrosion inhibition

- 1. Leaching of lithium ions
- 2. Lithium ion transport to defect area
- 3. Formation of a protective layer on the aluminium substrate

Fitting with physical model

• Oxide layer provides corrosion protective properties

MANCHESTER

AkzoNobe

SUSTICOAT

Δ

H2020-MSCA-ITN-2016/721451

The effect of the PVC

Systems of study and microstructure analysis

Epoxy model system with PVCs between 7.5 – 37.5%

Pigment ratios constant

The effect of the PVC

Lithium leaching and corrosion protection properties

Epoxy model system with PVCs between 7.5 – 37.5%

Pigment ratios constant

The effect of the PVC

Higher pigment volume concentration result in higher leaching rates and faster exhaustion of the system

• Larger network of interconnected pigment clusters

Increase of pigment volume concentration decrease the barrier properties of the coating

• Formation of defects through the polymeric matrix which enhance water permeation

Slower dissolution rate leads to higher R_{oxid} and R_{pol} – Better active corrosion protection

Can we control the rate of release?

Can we control the amount released?

Develop a model that describes the leaching of inhibitors with sufficient accuracy to explore the formulation space and inform what are the desirable features or properties of the coating and inhibitor

Release of corrosion inhibitors

Cellular Automata Model is a good compromise to model the release of inhibitors:

- ✓ Can capture different physical phenomena
- ✓ Can be related to real physical properties of the system
- ✓ Computationally efficient

MANCHESTER

AkzoNob

SUSTICOAT

Microstructure generation

Release simulation

H2020-MSCA-ITN-2016/721451

FORMULA X Manchester, UK

Microstructure generation

- Pigment volume concentration
- Particle size distribution

Clusters formation

Permeable heterogeneities

FORMULA X

Manchester, UK

Release simulation

FORMULA X Manchester, UK

Release simulation

Results

Total and connected inhibitor concentration

Random distribution of inhibitor particles results in unique connectivity profiles. Averages are needed over multiple configurations to represent real systems

H2020-MSCA-ITN-2016/721451

Release curves

MANCHESTER

AkzoNobe

SUSTICOAT

Effect of PVC

H2020-MSCA-ITN-2016/721451

MANCHESTER

AkzoNobel

OSUSTICOAT

14

Effect of solubility

H2020-MSCA-ITN-2016/721451

MANCHESTER

AkzoNobe

OSUSTICOAT

Effect of particle distribution

Spatial heterogeneity can affect the connectivity between inhibitor particles

AkzoNobe

MANCHESTER

SUSTICOAT

H2020-MSCA-ITN-2016/721451

FORMULA X

Manchester, UK

Effect of particle distribution

Comparison with experimental data

H2020-MSCA-ITN-2016/721451

MANCHESTER

AkzoNobe

18

Conclusions

- The release of corrosion inhibitors from primer coatings can be modelled using the CA approach
- Models can show the influence of microstructure and pigment properties on the release, enabling control on the factors that affect the process
- Simulations can provide important insight on the structure-property relationship in complex coatings to enable **optimal formulation design**

19

Acknowledgments

Dr. Yanwen Liu

Ms Maria Georgiades

Assistance given by the IT Services and the use of the Computational Shared Facility at the University of Manchester.

University of Manchester – AkzoNobel Corrosion Protection Partnership

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 721451

Cellular Automata model

Discrete approach

H2020-MSCA-ITN-2016/721451

FORMULA X

Manchester, UK