BASF We create chemistry

Encapsulation in double emulsions Fundamental analysis of stability

<u>S. Nachtigall</u>, C. Holtze, A. Laurenzis, S. Bachmann, M. Vranceanu, G. Oetter, F. Runge (BASF SE) V. Götz, S. Hosseinpour, W. Peukert (FAU Erlangen) N. Leister, H. P. Karbstein (KIT Karlsruhe)

Formula X I Manchester I 24-27th June 2019

Double emulsions: promising structures to encapsulate hydrophilic active ingredients

8

80

Inner aqueous phase (W₁) including active ingredients

Hydrophobic shell material (liquid or solid)

Outer aqueous phase (W₂)

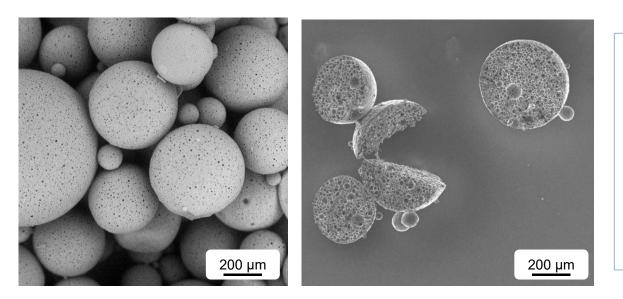
Potential applications - Encapsulation of...

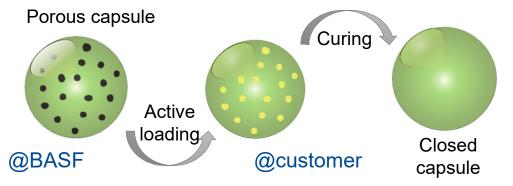
- …enzymes, proteins or peptides for detergents
- …hydrophilic bioactive ingredients (e.g. vitamins) for cosmetic and food applications
- …hydrophilic crop protecting agents and active ingredients in pharmaceuticals

Benefits

00

✓ Stability/protection of active ingredients


O/W-emulsifier

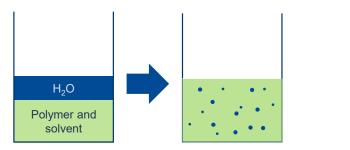

W/O-emulsifier

- ✓ Triggered or retarded release
- ✓ Taste/smell masking
- ✓ Drift and washing-out prevention

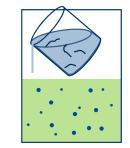
Double emulsions – example "Hollow microcapsules"

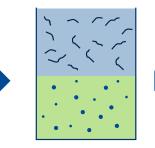
Concept

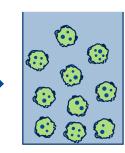
- Filling of empty, porous capsules with active material
- Pores of capsules to be closed after filling


Benefits

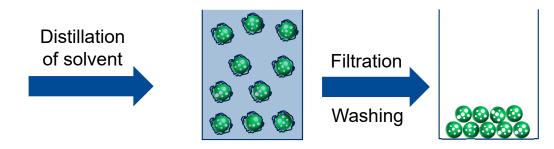
- Universal capsules for various active ingredients
- Biodegradable capsule matrix


Double emulsions – example "Hollow microcapsules"

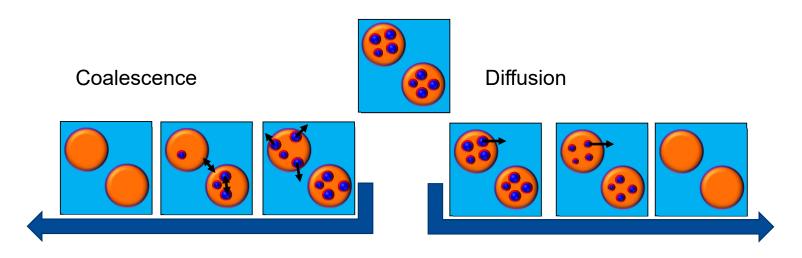

Step 1: W₁ in O emulsification



- Lipophilic surfactant (W/O-emulsifier)
- High energy input (e.g. gear rim dispersing device)


Step 2: (W₁/O) in W₂ emulsification

- Hydrophilic surfactant (O/W-emulsifier)
- Low energy input (e.g. stirred vessel)

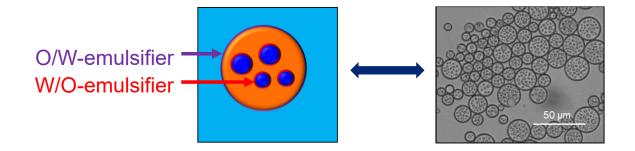

Double emulsions: challenges

Advantages

- Various different applications
- Preparation with common equipment

BUT

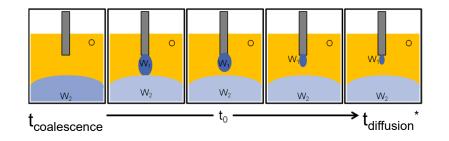
- Big challenge to keep active inside
- No guidelines for process and product development



Double emulsions: challenges

Analysis of coalescence- and diffusion phenomena in $W_1/O/W_2$ -double emulsions

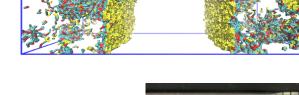
- New analytical approaches for investigating instability mechanisms
- Influence of process parameters


- Identification of structure/property-relationships
- Guidelines for faster formulation and process development

Formulation and process development based on molecular understanding

Methods to investigate instability mechanisms

Diffusion and coalescence at interfaces: single drop experiments & interfacial tension measurements \geq

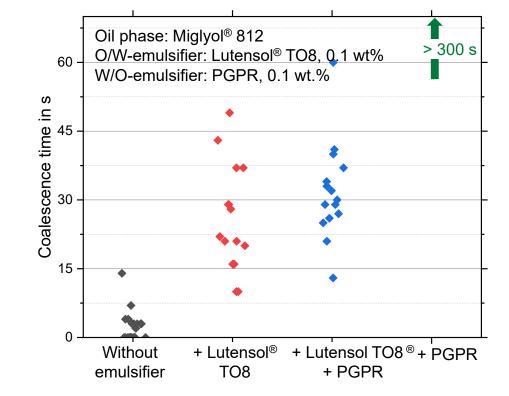


- Characterization of interfaces via nonlinear spectroscopy (SFG, SHG) \geq
- Supported by molecular modeling (BASF)
- Analysis of double emulsions in different scales

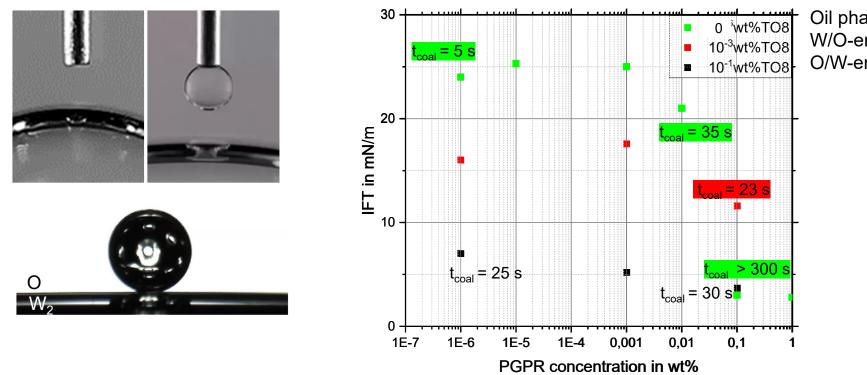
*S. M. Neumann, CC BY

7

04.07.2019 Formula X I Manchester I 24-27th June 2019



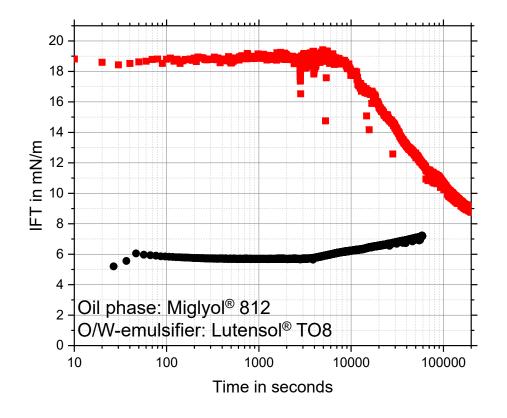
Diffusion and Coalescence Time Analyzer* Influence of emulsifier systems

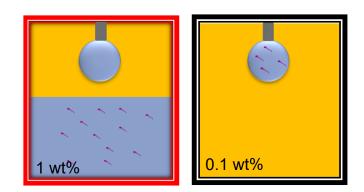

*S. M. Neumann, U. van der Schaaf, H.P. Schuchmann: The Diffusion and Coalescence Time Analyzer (DCTA): A novel Experimental setup for investigating instability phenomena in double emulsions. Food Structure 12 (2017) 103 – 112.

Diffusion and coalescence at interfaces

Influence of emulsifier system

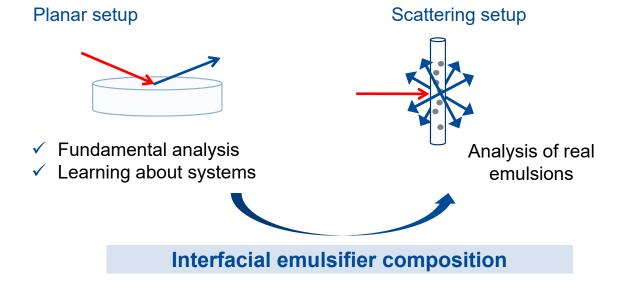
Oil phase: Miglyol[®] 812 W/O-emulsifier: PGPR O/W-emulsifier: Lutensol[®] TO8

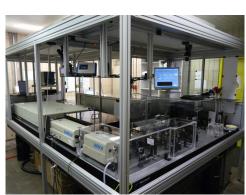

O/W-emulsifier disturbs stability



Analysis of emulsifier diffusion

Interfacial tension measurements

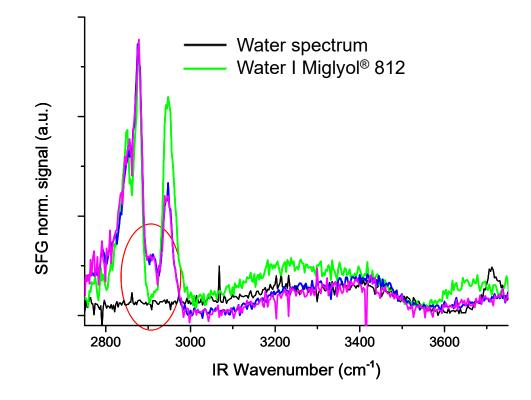



Determination of emulsifier diffusion via interfacial tension

Characterization of interfaces Nonlinear spectroscopy (SFG, SHG)

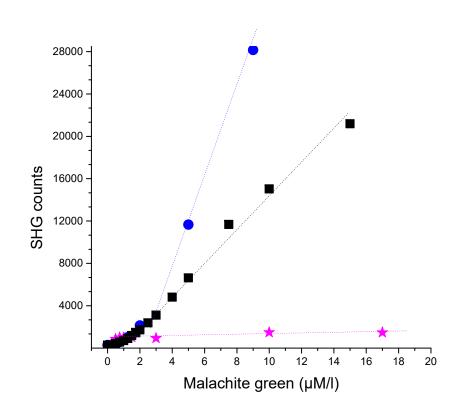
- Second Harmonic Generation (SHG): amount of molecules at interface (intensity)
- Sum Frequency Generation (SFG): type and orientation of molecules (spectra)

Experimental SFG setup


Experimental SHG setup

Characterization of interfaces

Planar SFG spectra I Influence of O/W-emulsifier


- Distinction between Miglyol[®] 812 and Lutensol[®] TO 8 is possible
- Lutensol[®] TO 8 dominates at interface
- Ordered and covering layer of surfactant
 - ✓ Detection of O/W-emulsifier at interface

Characterization of interfaces

Scattering SHG analysis I Adsorption of Malachite green

FAU

Emulsion production: Ultrasound Dispersed phase: Miglyol[®] 812 (φ=1 %) Continuous phase: water + surfactant Addition of malachite green

- Miglyol[®] 812 | Texapon[®] NSO (24 mM, d = 182 nm)
- _ Miglyol[®] 812 I SDS
- (0.3 mM, d = 190 nm)
- Hexadecane I SDS
- (0.3 mM, d = 180 nm)
- Different types of adsorption depending on emulsion properties
- **?** Surfactant molecules: replacement, binding on, relocation...

Double emulsions - Summary & Outlook

Advantages

- Various different applications
- Preparation with common equipment

Challenges

- Keeping the active inside → stability issues
- No guidelines for process and product development

Analysis of instability mechanisms

- New technical approaches to analyze instability mechanisms and for the characterization of interfaces
- Applicability of analytical approaches shown
- Next steps: screening of different emulsifiers and transfer of gained knowledge to real systems

BASE We create chemistry