Liquid-liquid mixing facilities for development of model predictive control for industrial scale-up:

PROSPECT CL project

Dr Min Zhang

26th June, 2019

CPI: National Formulation Centre

John Carroll Caroline Kelly Silvia Keppler Sofia Matrali Hanta Rabarjoelina Katharina Roettger Alex Smith Mark Taylor Glenn Ward Georgina Wadsley

University of Birmingham Federico Alberini Peter Fryer Min Zhang

University of Leeds Maryam Asachi Elaine Martin

University of Edinburgh

Andrew Schofield John Royer Wilson Poon

Perceptive Engineering Ltd

Matthew McEwan Eduardo Lopez Montero Marie O'Brien

Outline

- 1. Introduction of scale-up rig;
- 2. Validation and characterisation methodology:
 - In-line measurement validation
 - Characterisation of model formulations/rig behaviours;
- 3. A successful scale-up case study

- □ Scale up and manufacturability
- Develop a formulation and get it to market quickly
- Want equipment that will produce the same product on different length scales

• picture from web

PROSPECT CL – Proving of Real-wOrld Scalable PrEdiCtive Tools /Technologies for Complex Liquids

The scale-up rig

Flexible configurations for lab-scale investigation (e.g., 1 L) & industry production (e.g., 1000 L)

The Digital Infrastructure

PROSPECT CL

PROSPECT CL – Proving of Real-wOrld Scalable PrEdiCtive Tools /Technologies for Complex Liquids

National Formulation Centre facility: 1, 10, 100, 1000 L vessels and instrumentation

- Complex liquid mixing/processing scale-up loop;
- Representative model formulations;
- Platform to test/validate Process Analytical Technology (PAT) for process monitoring and product quality control use.

The flow rig – processing parameters

- High shear mixers
- Jacket heating
- Temperature range 4-90 °C
- Powerful pump for high viscosity loop

	Limits
T _{min} (°C)	4
T _{max} (°C)	90
1 L mixer speed (rpm)	5700
Max. 10 L mixer speed (rpm)	5700
Max. 100 L mixer speed (rpm)	5700
Max. 1000 L mixer speed (rpm)	250 (3000 after 03/2020)
Recirculation max flow (L/min)	9.4
Dosing max flow (L/min)	8.9

Process Analytical Technology (and off-line measurements)

Insitec

Real-time monitoring and control; of particle sizes in emulsions, suspensions and slurries.

In-line viscosity measurement

Gff-line rheology behaviour characterisation

RheoJet

High accuracy and robustnesss; instant feedback for real-time process optimisation and continuous product control L7 VISCOMETER

TA instrument rheometer

In-line measurement validation

Validation of Hydramotion Rheojet – In-line viscometer

From User Manual

- Orientation independent
- Fluid depth sufficient to cover bob

- CFD calculations- ascertain how fluid flow pattern changes with adapter geometry
- Modelling transient fluid velocity and change in volume fraction of fluid

RheoJet validation – CFD New Adapter

RheoJet validation – New Adapter

- Installation & commissioning of new adapter on current flow loop
- Prepare glycerol & water solutions of known concentrations
- Record measurements with RheoJet in loop at set pump speeds (increasing from 5%)
- Take sample for offline rheology tests
- Compare results to literature values & offline readings.

RheoJet validation – Glycerol solutions

- Similar readings between in-line RheoJet and offline rheometer reasonable error
- Viscosity independent of fluid velocity / pump speed– Newtonian fluid
- Viscometer does a relative viscosity measurements whereas offline rheometer gives apparent viscosity values across a range of shear rates

RheoJet validation

Summary:

- Adapter issues presence of air bubbles and preferential flow along one side of the sensor
- Effect of adapter geometries using CFD
- New adapter reliable and repeatable results given for Newtonian fluids

Development of an experiment methodology for scale-up

1 L vs 10 L

Scale – up

(Tip speeds: 50%, 75% and 100%)

Model formulation:

- 54.5% of Vegetable oil
- 44.6% of water
- 0.9% of PGPR (emulsifier)
 - polyglycerol polyricinoleate (PGPR)

Tip speed (%)	1 L vessel		10 L vessel			
	50	75	100	50	75	100
Percentile c (90) No Wt (µm)	7.34	8.18	8.14	6.41	8.42	8.09
Span (-)	1.92	2.02	1.90	1.62	1.93	1.84

Summary and future work

- 1. Rig has been commissioned and tested with different model formulations;
- 2. A methodology for characterisation of an emulsion model and identification of operation window has been developed;
- 3. Successful scale-up from bench-top DOE model to 10 L:
 - Control of particle size, viscosity and stability when scaling up/down
 - DOE trends can be confirmed on larger scales
 - MPC for advanced process control will be developed based on experimental data
- 4. Transfer to CPI Jan March 2020.

Acknowledgments

• CPI

John Carroll Tony Jackson Sofia Matrali Katharina Roettger Mark Taylor Georgina Wadsley Glenn Ward University of Edinburgh
 Andrew Schofield

University of Leeds
 Maryam Asachi
 Elaine Martin

- Perceptive Engineering Ltd Eduardo Lopez Montero Marie O'Brien
- University of Birmingham
 Federico Alberini
 Peter Fryer

Contacts:

Dr Min Zhang: m.zhang@bham.ac.uk (UoB)

Dr Katharina Roettger: Katharina.Roettger@uk-cpi.com (CPI)

cpi