

FORMULATION OF DELIVERY SYSTEMS FOR CAROTENOID-RICH EXTRACTS FROM MICROALGAE

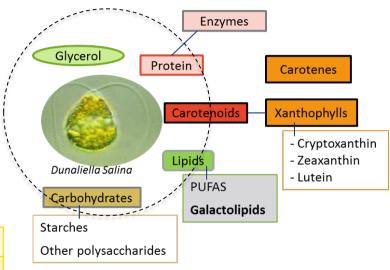
<u>Isabel Mira</u>, Malin Svensson, Karin Persson, Anna Fureby

RISE Research Institutes of Sweden

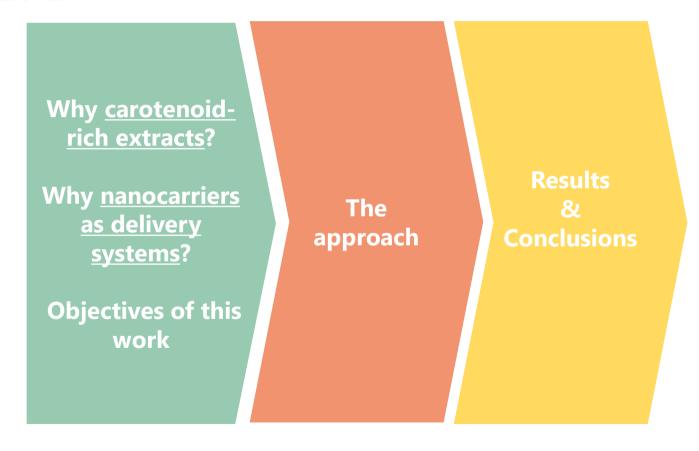
WHO WE ARE AND WHAT WE DO

- Contract research and innovation
- o Confidential
- Large or small projects
- The customer owns IP
- Consortia projects
- Academia & Industry
- o Open research
- Funding agencies
- Non-competing members of the value chain
- Analytical Services and Testing
- Courses
- Open training courses
- o Tailor-made, in-house

EXTRACTS FROM MICROALGAE

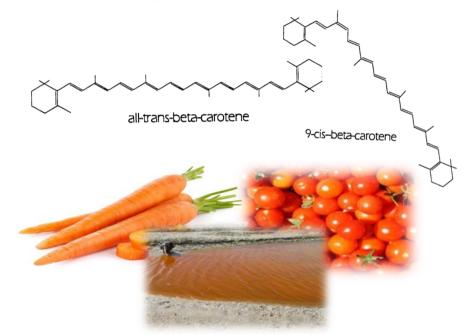


Goal Set a world benchmark for a sustainable algal biorefinery.


Start	Dec 2013
End	Nov 2017
Participants	13 partners from 8 different countries
Total budget	ca. 8 MEuro

High added-value products

OUTLINE



WHY CAROTENOID-RICH EXTRACTS?

- Carotenoid organic pigments
- Flowers, plants, vegetables and some (micro)algae
- Two main classes: Carotenes & Xanthophylls
- Many associated health benefits
- Food supplements, food colourants
- Stable in their natural form
 Extracted carotenoids need protection

- Poorly soluble subtance
- Prone to chemical degradation /oxidation

- Autoxidation
- Thermal Degradation
- Photodegradation
- Singlet Oxygen
- Acid
- Iron and Iodine
- Free Radicals

CAROTENOID-RICH EXTRACTS FROM MICROALGAE (Dunaliella Salina)

• 25-30% carotenoids (mostly β - and α -carotene)

• 2-5% chlorophylls

• 5-10% triglycerides

Traces of mono and diglycerides

 50-60% likely lipid-bound carotenoids

Fatty acid profile	
C16:0	24.2 %
C18:3	27.3 %
C18:1	12.6 %
C18:2	7.3 %

DELIVERY SYSTEMS: WHY NANOCARRIERS?

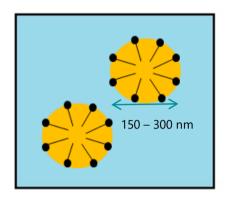
- Common way of incorporating lipophilic actives in foods/nutraceuticals:
 - oil-in-water (O/W) emulsions
 - Solid lipid carriers (SLNC, NLC)
- Beverage formulations
- Drops/particles < 0.5 um (500 nm)
- Improved physical stability, sensory properties, release profile
- Recommended daily intake of βcarotene: 11mg

DELIVERY SYSTEMS: WHY NANOCARRIERS?

Solid Lipid Nanoparticles as Delivery Systems for Bioactive Food Components

June 200

AGRICULTURAL AND FOOD CHEMISTRY


Article pubs.acs.org/JAFC

Transparent Dispersions of Milk-Fat-Based Nanostructured Lipid Carriers for Delivery of β -Carotene

Linhan Zhang, † Douglas G. Hayes, ‡ Guoxun Chen, $^{\$}$ and Qixin Zhong *,†

[†]Department of Food Science and Technology, [‡]Department of Biosystems Engineering and Soil Science, and [§]Department of Nutrition, University of Tennessee, Knoxville, Tennessee 37996, United States

Solid lipid carriers (SLNC, NLC)

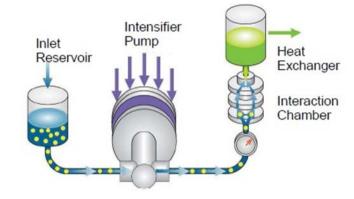
- Active dispersed in solid particles of solid lipid/oil mixture.
- The addition of **oil** leads to a **less crystalline** matrix
- Degree of crystallinity → loading capacity and physical stability
 - Degradation can be much reduced
 - Reduced mobility for diffusing to the interface

OBJECTIVES

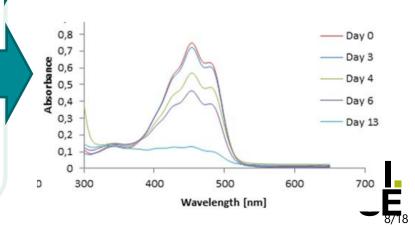
- Develop o/w nanoemulsions and nanostructured lipid carriers,
 NLC, for encapsulation of the carotenoid-rich algal extract.
- Evaluate and compare the two delivery systems in terms of their ability to protect the carotenoids from degradation.

EXPERIMENTAL APROACH

Lipid phase: solution of extract in oil or melted lipid

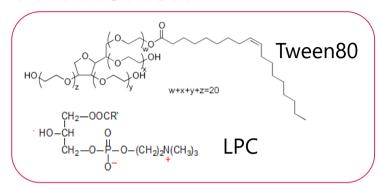

Emulsification via microfluidisation

Storage conditions at different conditions


Assessment of carotenoid concentration UV absorbance UV-vis spectrophotometry, 454nm

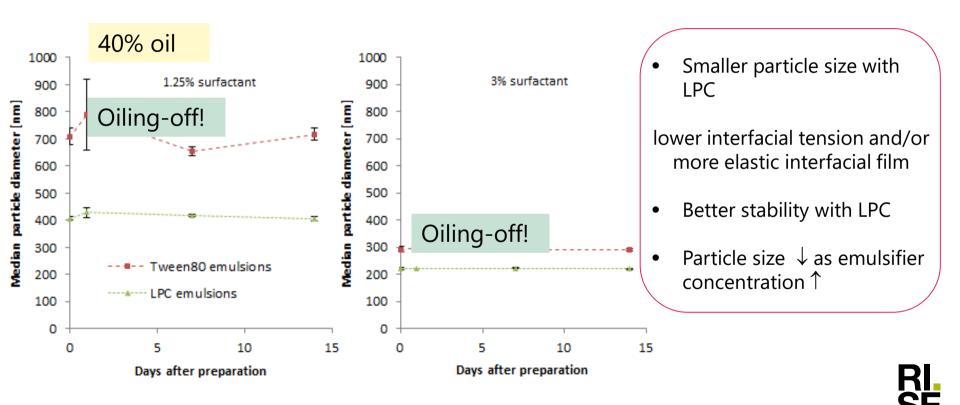
Chemical stability upon storage

Drop size distribution **Physical stability**

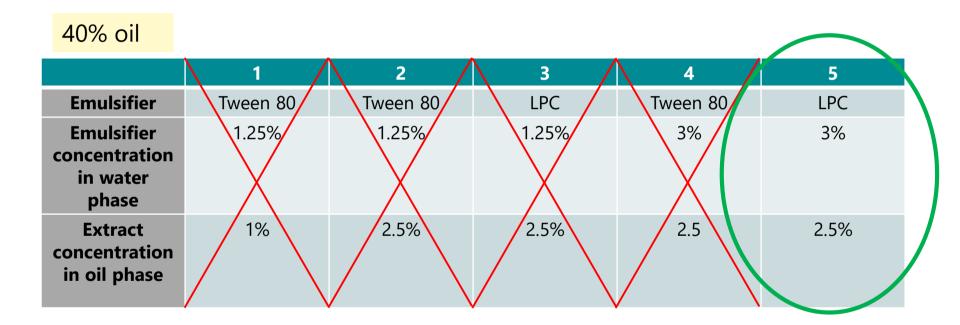

- RT and 40°C (no light)
- RT + UV

NANOEMULSION DEVELOPMENT - APPROACH

- Medium chain tryglycerides (MCT)
- Sunflower oil
- Extract solubility
- Extract chemical stability -2 weeks


- Ethoxylated sorbitan monooleate (Tween80)
- Soybean lysolecithin (Lipoid LPC S80)
- Two different concentrations

Physical stability


- Particle size (2 weeks)
- Visual observations (4 weeks)

NANOEMULSION DEVELOPMENT

Nanoemulsion Formulation Development

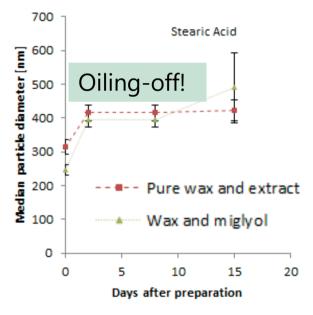
NANOSTRUCTURED LIPID CARRIER (NLC) DEVELOPMENT - APPROACH

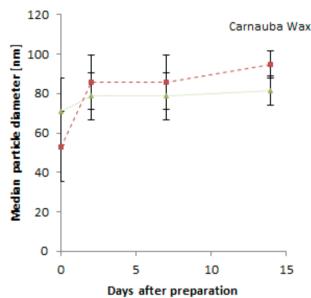
Type and
Concentraion
Emulsifier
Fixed

3% I PC

80% C56-C60 saturated wax esters 20% fatty acids, fatty alcohols and hydrocarbons.

Choice of lipid matrix composition


- Stearic Acid
- Carnauba Wax
- + 15% MCT


2 week physical stability

- Particle size (2 weeks)
- Visual observation (4 weeks)

NANOSTRUCTURED LIPID CARRIER (NLC) DEVELOPMENT

- Much lower sizes with Carnuba wax
- MCT in matrix: no significant difference in size
- Stearic acid: oiling-off at day 0
- Carnuba wax :
 - lower crystallinity better encapsulation efficiently

Selected Delivery Systems

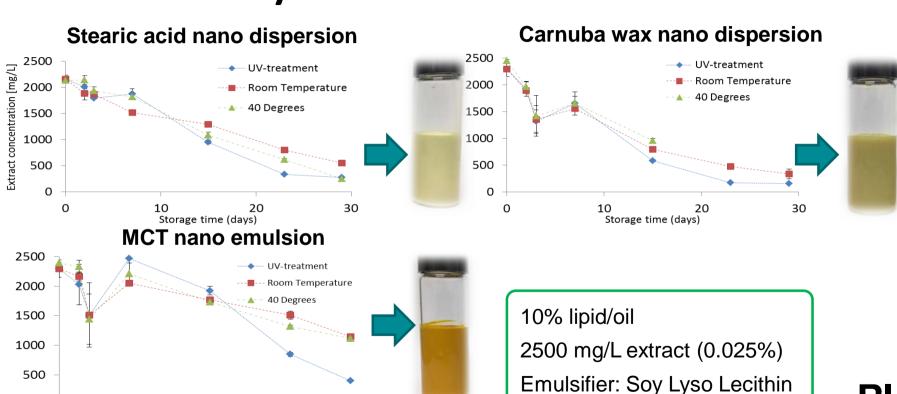
40% o/w Nanoemulsion

Oil: MCT Emulsifier: LPC Extract in oil: 2.5% Overall extract: 1% D (0.5): ca. 220 nm

10% o/w Nanoemulsion

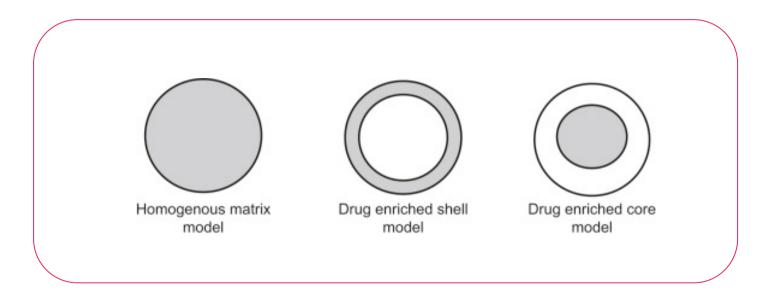
Oil: MCT Emulsifier: LPC Extract in oil: 2.5% Overall extract: 0.25% D (0.5): ca. 134 nm

10% Carnauba Wax NLC


Lipid: C.W/MCT (15%) Emulsifier: LPC Extract in lipid: 2.5% Overall extract: 0.25% D (0.5): ca 80 nm

10% Stearic Acid NLC

Lipid: S.A./MCT (15% Emulsifier: LPC Extract in lipid: 2.5% Overall extract: 0.25% D (0.5): ca 193 nm

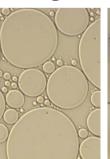


Stability of extract in nano-carriers

NANOSTRUCTURE IN NLC

CONCLUSIONS

- Not possible to directly extrapolate behaviour of single carotenoids to that of complex carotenoid mixtures.
- Limited mobility of actives in NLC's not enough to prevent degradation.
- Better understanding oh how to control internal structure and crystallisation process in NLC's is essential.


Thanks to:

Malin Svensson Karin Persson Anna Fureby European Commission, FP7 Factory
D-Factory: THE MICRO ALGAE BIOREFINERY
(Contract no. 613870)
www.d-factoryalgae.eu

and to you for your attention!

