Encapsulation of Docosane into Polyurethane Microcapsules as Latent Phase-Change Materials for Thermal Energy Storage

Dr. Paula Felix De Castro and Prof. Dmitry Shchukin

www.liv.ac.uk/stephensoninstitute

Thermal Energy Storage (TES)

Latent Heat Storage (LHS)

- Latent heat by using **Phase Change Materials** (**PCMs**). Thermal energy is stored when the PCM undergoes a phase change (S-S, S-L, L-G, S-G transitions).
- Heat characteristics:
	- Heat can be stored/release at almost constant temperature.
	- Higher energy density storage per mass/volume.
- **Still technology in development:**
	- **Inorganic PCMs** suffer supercooling and improper resolidification process, degradation and are also corrosive to the heat transfer matrix.
	- **Organic PCMs** show low thermal conductivity and flammability.

PCM encapsulation need

- **1.** Confinement of the liquid phase during the S-L transition and vice-versa.
- **2.** Prevent degradation of the PCMs in contact with the outside environment.
- **3.** Heat transfer improvement via increasing the surface/area ratio (organic PCMs). $\overline{}$
- **4.** Supercooling problems in inorganic PCMs are neglected after encapsulation.
- **5.** Flexibility of incorporation of mPCMs in the application devices.

Research lines

- 1. Encapsulation of **n-alkanes** (organic PCMs).
- 2. Encapsulation of **Salt Hydrates** (inorganic PCMs).
- 3. Development of hybrid systems based on: **PCM**-**GO**-**CNTs** microcapsules/GO for 2D flexible heating devices.

Synthesis Methodology

A template (Silicone oil) was used to optimize synthesis conditions for the encapsulation of organic PCMs (n-alkanes)

Selected n-docosane (C22) as PCM

 $T_m = 44 °C$ ΔH_m = 249 kJ/kg

- Thermo-regulating paints, coatings
- Building components, solar cell components
- Thermo-responsive textiles

Polyurethane (PU) was chosen as a shell

STEPHENSON INSTITUTE FOR RENEWABLE ENERGY

Encapsulation via Mini-Emulsion Interfacial Polymerization

STEPHENSON INSTITUTE FOR RENEWABLE ENERGY

100 % Silicone oil as template

SEM images

No latent heat when using silicone oil as a core template

FOR RENEWABLE ENERGY

50 % Silicone oil- 50 % PCM SEM images

Latent heat obtained when introducing 50 % of PCM as a core

100 % n-docosane as PCM

PUshell/n-docosane

 $(4 \pm 1 \,\text{\mu m})$

100 % n-docosane as PCM

PUshell/n-docosane

 $(4 \pm 1 \,\text{µm})$

100 % n-docosane as PCM

PUshell/n-docosane

Obtention different microcapsule size by using different rpm

$\overline{}$ **Confinement effect on heat properties and cristallinity**

DSC (Heat properties)

E

$\overline{}$ **Shell thickness Cycling stability**

NIVERSITY OF

SEM, FIB-SEM images of artificially broken microcapsules and TEM images

> STEPHENSON INSTITUTE FOR RENEWABLE ENERGY

Samples exposed to 100 heating/cooling cycles

Incorporation of mPCMs onto textiles – (Thermo-regulating textiles)

STEPHENSON INSTITUTE

FOR RENEWABLE ENERGY

100 µm

VERSITY OF

VERPOOL

SEM images Incorporation of mPCMs into textiles by Nanofibrillated Cellulose (NFC) coating

 $10 \mu m$

STEPHENSON INSTITUTE FOR RENEWABLE ENERGY

Capsules coated on the surface of textile with NFC

www.liv.ac.uk/stephensoninstitute *Prof. Sergiy Minko Collaboration Project with University of Georgia (USA),*

2. Encapsulation salt hydrates

 T_{A} AB + H₂O (anhydrous salt)

 $AB_{n}(H_{2}O)$ melts $AB_{m}H_{2}O + \frac{1}{n_{m}H_{2}O}$ (lower hydrated salt) melts

3. Hybrid systems: PCM-GO-CNTs

PCM-GO-CNTs microcapsules for 2D Joule Heating Devices

Fabrication of PCM-GO-CNTs microcapsules

FOR RENEWABLE ENERGY

i,

2016. *10 ,* 4695-4703*.*

3. Hybrid systems: PCM-GO-CNTs

Higgins, L. Guan, Y. Wang and D. Shchukin. *ACS Nano*. **Z. Zheng**, J. Jin, J. Zou, U. Wais, A. Beckett, T. Heil, S. **2016**. *10 ,* 4695-4703*.*

3. Hybrid systems: PCM-GO-CNTs

Fabrication of 2D Joule Heating devices à **PCM-GO-CNT/GO**

Thermal enhancement properties

PCM-GO-CNTs + GO

1 cycle consists on:

Power input applied to device: **on** \rightarrow device heats up (T recorded)

Power input switch **off** \longrightarrow device cools down (T recorded)

Measured over 100 cycles for:

- 2D Joule Heating devices made of **PCM-GO-CNTs/GO**
- Reduced GO (standard device)

10 % thermal enhancement

Higgins, L. Guan, Y. Wang and D. Shchukin. *ACS Nano*. **Z. Zheng**, J. Jin, J. Zou, U. Wais, A. Beckett, T. Heil, S. **2016**. *10 ,* 4695-4703*.*

Acknowledgments

University of Liverpool

Prof. Dmitry Shchukin Dr. Zhaoliang Zheng Michael Graham Marios Michailidis Xiaolei Zhu Lorena Martin Claudia Gatti

PhD Student Salt hydrates encapsulation **Michael Graham**

Dr. Zhaoliang Zheng Hybrid systems based on PCM-GO-CNTs

University of Georgia collaboration and the context of the encapsulation and enhancement

Prof. Segiy Minko Dr. Yunsang Kim

Funding

- NanoBarrier
- Byefouling
- Sono Engineering

- ENERCAPSULE ERC
- InnovateUK

www.liv.ac.uk/stephensoninstitute

STEPHENSON INSTITUTE FOR RENEWABLE ENERGY

Thank you very much for your attention

P.Felix-De-Castro@liverpool.ac.uk

www.liv.ac.uk/stephensoninstitute