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Traditional formulation

* Time consuming

 Datasets often unavailable
* Inconsistent quality

* Reliant on dwindling expertise and skilled operators
(GAP0O018 - SIP, Industrial Strategy 2017)

* Design space inherently constrained by human intuition and
quantities

* TPP/mTPP/qTPP — multiple endpoints.

* Quality reporting requires expertise
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A revolution in the chemical sciences?

CHEMISTRY\ORLD
Your new labmate does almost 700

reactions in eight days - and it's a robot

Google Al and robots join forces to
build new materials

Tool from Google DeepMind predicts nearly 400,000 stable substances, and an
autonomous system learns to make them in the lab.

AstraZeneca iLab: The

automated lab of the future

Autonomous polymer synthesis delivered by multi-
objective closed-loop optimisation*
Stephen T. Knox ,Sam J. Parkinson i § , Clarissa Y. P. Wilding . Richard A. Bourne and Nicholas J. Warren

School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, L52 94T, West Yorkshire, UK. E-mail:

n.warren@leeds.ac.uk

An autonomous portable platform for universal
chemical synthesis

J. Sebastidn Manzano, Wenduan Hou, Sergey S. Zalesskiy, Przemyslaw Frei, Hsin Wang, Philip J. Kitson &
]

Leroy Cronin

Nature Chemistry 14, 1311-1318 (2022) ‘ Cite this article

Operator-independent high-throughput polymerization
screening based on automated inline NMR and online
SEC!

Joren Van Herck , lyomali Abeysekera , Axel-Laurenz Buckinx , Kewei Cai , Jordan Hooker "™/ | Kirti Thakur , Emma Van de Reydt,
Pieter-Jan Voorter , Dries Wyers and Tanja Junkers

Polymer Reaction Design Group, School of Chemistry, Monash University, 19 Rainforest Walk, Clayton, Victoria 3800, Australia. E-mail:



UCL SCHOOL OF PHARMACY &

A revolution in the chemical sciences?
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Burger et al, Nature, 2020, 583, 237-241
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A revolution in the chemical sciences?

Knox et al, Polym. Chem., 2022, 13, 1576-1585

Methanal
80- 116 °C; 4 - 20 mins

¢/ Sample loop

(a) o (b) (©
= 200 eq %”JLN ,J< 5. 7 Molar mass dispersity, D Monomer conversion
L I R T
2 " HN s £
Teq 0.1eq NC)’(N—,NXCN )V -
f:l

NMR

AUQD) 9%

ct
Real-Time Orthogonal Analyses
A
© - TS-EMO
LHC - 10 training Construct and Ty ’ Ne
Inputs experiments sample from b T
Min/Max T i Gaussian process experiment - 'd:ngf‘ed User
. B, = surrogate model Dl ok I Interventio
e { . experiment
T O f[x]T \;/ conv
Outputs @ Yes




UCL SCHOOL OF PHARMACY Y

A vision for modern formulation

* Bespoke automated pipelines
for a particular dosage form [T

with closed-loop capability ];\M i] \V =

* Full exploration of excipient Build Test R

space =y
« Multiple endpoints matched to s < \ >
TPP Design v\_/ Learn E

e Standardised reporting with DA —
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Where are we”?
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Combinatorial explosions

Combiningthingsin different concentrations gets very complex very quickly.

If we have 2 excipients that can be combined in 11 different concentrations (0 to 10%) then we have:

11 x 11 =121 different ways of combining them.

This increases rapidly — we multiply this by 11 each time we add a new excipient.

If we have 10 excipients that can be combined in 11 different concentrations (0 to 10%) then we have:

1Mx11x11x11x11x11x11x11x11x11 or 110 = 25,937,424,601 ways to combine them.
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Combinatorial explosions

One Million secondsis ~12 days
One Billion seconds is ~32 years
One trillion seconds is ~30,000 years

i $1,000,000
| __in $100 bills

— 1l

in $100 bills

$100 Million

in $100 bills

$1 Trillion

in $100 bills
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Our current exploration of formulation space is limited

Mucoadhesive polymer formulations for drug - Unexplored Materials
delivery: @ - Explored Materials

- 101 formulations published.

™~
c
- Assuming all possible combinations of every % °7
parameter in the dataset (unrealistic), there are CEL
~100 billion possible polymer formulations. S 07
)
S
- 0.0009% of the state space has been explored. £ 27 e ";
-4 A
_6 _I T T T T T T
-6 —4 -2 0 2 4 6

FAMD component 1

Cook, Shorthouse. Under review
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Bayesian Optimisation

Bayesian Optimisation offers a method for exploring these systems in an intelligent and efficient way.

Make Stuff
Data “Surrogate” Model I

Fit Model Predict Useful
>

Samples

>

Add to Data and Repeat
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Bayesian Optimisation

The surrogate model generally relies on the uncertainty of its predictions to recommend the next points for study.

There are multiple mathematical methods available for calculating the “best” next data to collect.

1. Evaluate Random Points Across Domain 2. Regress Mean Function
3.0 ® Sample Points 3.0 ® Sample
—— Unknown Function —— Unknown
2.5 2.5
—— Regressed
3.0 2.0 1
1.5
1.5
1.0
1.0
0.5
0.5
0.0
0.0 4 054
0.5 4 —1.0 4
T T T T T T T T T T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 15 -1.5 -1.0 -0.5 0.0 0.5 1.0 15
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Medium.com
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Bayesian Optimisation

The surrogate model generally relies on the uncertainty of its predictions to recommend the next points for study.

There are multiple mathematical methods available for calculating the “best” next data to collect.

%

0.0 0.5 1.0

Brochu et al. Arxiv (2010). https://doi.org/10.48550/arXiv.1012.2599
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Clustering Learning Loop

(B o een |
@ Pese
Reas

i +K K-means

“Greenest” Combination
O ~ O O
°0g0 © 9°%52a o v | 590 ©
O o OO O o O O OO O S — Determine “Best” Samples Collect Determined Samples —_— O O OO_O/ Best encapulation
OOOO O%\ OQOO c\> 0 0 5§
O O Prediction f
O O O o + O O ® o o O unsg;nlcei%ri]pig;ts
Define Formulation Space Generate representative Defined Formulation

“seed” dataset Landscape

|
|
|
|
|
|
|
|
|
|
|
|
|
O J : | [ | T
|
|
|
|
|
|
|
|
|
|
|

Robotic Collection



UCL SCHOOL OF PHARMACY Y

An example:

* System of 6 excipients with 11
potential concentrations each.

* 17 million possible 0. o
combinations.

—-0.80

-0.85
-0.90

« We “seed” our system with 96
samples (3 x 96 well plates). 3

-0.95

Minimum value discovered

-1.00

-1.05

—-1.10- T T T T - - : r .
0 1 2 3 4 5 6 7 8 9

* Wethen run batches of 32 (one teration
plate with 3 repeats) samples.

=
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* We get near to a theoretic
optimum within
400/17,000,000 (0.002% of)
samples.

No. samples with a value <
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An example:
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An example:

Learning Loop ~0.701
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An example:

* System of 6 excipients with 11
potential concentrations each

e 17 million possible 0. e
combinations

-0.80

-0.85

-0.90

« We “seed” our system with 96
samples (3 x 96 well plates)

-0.95

Minimum value discovered

-1.00

-1.05
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Iteration

* Wethenrun batches of 32 (one
plate with 3 repeats) samples
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A real example:

* Atargetactive.
* 6 possible excipients.

* 11 levels foreach excipient (0 and 1-10% solutions).

* We follow the identical process as in our “toy” example
system:
* 3x96 well platesto seed the system.
* 1x96 well plate per loop.
* We use an opentrons OT-2 to generate the samples.

* Each loop takes ~6 hours (with manual steps required).

* We measure a target endpoint with a plate reader.
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A real example:
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-We reach a “good” minimum value within 5 loops

- 7 different and novel combinations discovered above our threshold
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A real example:

Surfactants
3 5 5 5 4
) 0 1 4 2
5 5 3 5 5
Samples 5 4 3 5 4
) 4 5 1 2
3 4 5 1 5
4 2 2 3 1

These samples are diverse



Next Stages:

« “Closethe loop”

* |ndustry standard QC/Assessment

* Explore efficiency of different algorithms

* Automatic reporting/collating of formulation contents

* Optimisation of multiple endpoints
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Shorthouse & Cook Groups:
Antonia Gucic

Helena Ros
Shorthouse Group: Cook Group:
Youssef Abdalla Eleanor Hilton
Sara Jamshidi Parvar Niamh Haslett
Leo Gornovskiy Shuting Li
Mark Kudady Hessam Rasooli Nia
Gedion Gurmahun Toyosi Akande
Rama Hassoun Jamie Summers
Marissa Taub
Funders & Supporters: Li Qian
Elinda Zeqiri
. . Engineering and
ROYAL Physical Sciences
SOCIETY Research Council
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