IMAT: as it stands

2017

- Conventional neutron radiography and tomography
- Energy-selective imaging
- Diffraction analysis: strain + phase (from 2017)

Science & Technology Facilities Council

Imaging and diffraction (being commissioned)

Imaging and diffraction (being commissioned)

IMAT instrument

Science & Technology Facilities Council

ISIS

Specification: imaging

- Field of View: 20x20 cm²
- Spatial resolution: 50 µm
- Δλ/ λ: <0.8%

Energy-selective imaging

Time=energy stack of radiographies

'Conventional' neutron radiography and tomography: non-destructive testing

'Conventional' neutron radiography and tomography: hydrogen / water

Energy dependent neutron tomography

Basic diffractometer design (pulsed source)

Residual stress in castings

 Contributes to both distortion during machining and fatigue during service

 E.g. cast magnesium block, stresses were high enough to cause internal cracks in casting

Science & Technology Facilities Counci

IMAT Methods

