

IVers

Application of Image Analysis extensions to processes of relevance to drug development

Dr Alain Pluen

alain.pluen@manchester.ac.uk

Division of Pharmacy and Optometry School of Health Sciences Faculty of Biology, Medicine and Health University of Manchester

Proteinaceous aggregates characterisation

Meet regulators requirements

MANCHESTER

1824

- USP chapter "Particulate matter in Injections" <788>: concentration limits for >10mm
- Provide additional information on presence of smaller aggregates
 - USP chapter <787> "Subvisible Particulate Matter in Therapeutic Protein Injections": monitor particles < 10mm
- Welcome information form orthogonal techniques (FDA)
- Adaptable to real formulations
- Contribute to prediction based on relevant stresses

Adapted from Zolls et al., J Pharm Sci, 2012

Image analysis techniques

Recent considerations in life sciences

Cost of specialist equipment

Necessity of statistically relevant information

Typical example is fluorescence microscopy

Clever Characterisation for Smarter Formulation 2 – RSC, 10th November 2017

Exploit all data

Fluorescence microscopy Moved from epifluorescence to STED, PALM over ~30 years

Fluorescence microscopy related image analyses

Image correlation spectroscopy (Pedersen et al.,early 90s)

> Development of variants i.e. kICS, RICS etc... (Wiseman, Gratton)

Spatial Intensity Distribution Analysis (Wiseman group)

> Number and Brightness (Gratton)

and many others...

In house RICS software ManICS RICS: HOW IT WORKS

Image Correlation Spectroscopy: Using the information contained in images

Hamrang et al., J Pharm Sci, 2012

he University f Manchester

ICS does not track particles: it considers/correlates fluorescence fluctuations. Fundamentally different from NTA

Hamrang et al., J. Pharm. Sci. (2012)

STUDY OF AGGREGATION PROPENSITY

ne Universit

RICS: move towards real formulations

• High concentration of proteins

• Excipients and contaminants

• High vs low concentration

RICS: Short optical path Backwards Only label aggregate Hydrophobicity

Important choice Extrinsic fluorescent dyes to label: (1) Aggregates (2) The medium

Aggregate labelling optimisation

- Sufficient signal to noise ratio
- Specific to aggregates (does not label silicone oil droplets or surfactant)
- Photostable
- Rule out autofluorescence of components e.g. silicone oil droplets

Versi

Evaluation in simple solutions

- Validation and benchmarking of RICS against standard techniques (DLS, MFI) in buffered solutions
- Two types of stress were imposed to mAbs solutions (heat and freeze thaw cycles)
- Sypro red is added after stress

Concentration	1	10	
(mg/mL)			
Treatment	Z-average Diameter (nm)		
NT	14.60±0.74	10.71±0.10	
58 °C	33.40±0.20	30.23±0.00	

Hamrang et al., J Pharm Sci (2015), 104, 2473-2481

Similar trends were observed following freeze thaw cycles on mAb solutions

Move towards real formulations (PFS)

Differentiation between proteinaceous and nonproteinaceous sub visible particles

mAbs aggregates

Shah et al. Int J Pharm (2017), 519, 58-66

The University of Manchester

Move towards real formulations (PFS)

Differentiation between proteinaceous and nonproteinaceous sub visible particles

Shah et al. Int J Pharm (2017), 519, 58-66

Conclusion

- The Universi of Manchest
 - Image analyses are useful tools
 - RICS has been benchmarked and covers a wider range than RMM
 - RICS is able to distinguish between proteinaceous and nonproteinaceous aggregates
 - PS contributes to Silicone oil droplets presence
 - Move towards flow to increase sampling
 - Use of SP8 allows for kinetics (aggregates formation) as dataset obtained for each image

ie Universi

Thank you for listening

Acknowledgments

University of Manchester

Egor Zindy, Robin Curtis Ben Staley Zahra Hamrang Maryam Shah James Austerberry

Alan Dickson Jo Flanelly Malcolm Rhodes Jeremy Derrick Alexander Golovanov Jim Warwicker

Chris Van der Walle Shahid Uddin Katie Tingey

Are imaging tools novel?

- Imaging techniques and associated analyses in use
- Examples:
 - Microflow imaging
 - Size and conformation

• Complementary to Archemides (RMM)

(Weinbuch et al., J Pharm Sci, 2013)

- Nanoparticle tracking
 - Evanescence wave
 - Multiple particle tracking

Advantages/disadvantages: MFI: particle range NTA: dilution

A non exhaustive list of current techniques

Analytical method	Aggregate size (μm)	Advantages	Disadvantages
DLS	0.001-5	Sensitive to large aggregates broad analyte concentration	Semi-quantitative, bias towards large aggregates, dust, unsuitable for polydisperse/complex samples
Analytical ultracentrifugation	0.001-0.1	High resolution, absolute concentration, size shape	Low sample throughput, sample dilution, complex data analysis, susceptible to excipients, expert operator needed
Asymetric field flow fractionation	0.001-100	Low concentration sample analysis	Sample dilution, qualitative for large aggregates, potential interaction with membrane

Adapted from Hamrang et al., TRENDS in Biotechnology, 2013

A more structured and complete list is proposed in Hawe et al. (J Pharm Sci 2012)