TEXTURED MICROCAPSULES THROUGH CRYSTALLIZATION

@bonlab

2 March 2021 Keeping it Green in Personal Care Online RSC Webinar

SUPRACOLLOIDAL CHEMICAL ENGINEERING

prof. dr. ir. Stefan A. F. Bon

WARWICK THE UNIVERSITY OF WARWICK

Matt Donald, Josh Booth, Sarah McGinley, Wai Hin Lee, Yuan-Zhi Li, Josh Ryan, Naemah Md Noor, Jamie Rolinski, Douglas Soutar, Emily Brodgen, James Coe, Jack Cartwright, Josh Davies.

Special thanks to **Sam Wilson-Whitford (4th from left in picture)**, & Ross Jaggers, Brooke Longbottom, Guy Clarkson

Nanogels as Surfactants ACS Nano **2019**, 13, 399-407. WO2020079416A1.

Replacing Titanium Dioxide as Opacifier J. Mater. Chem. C, 2021, Advance HOT Article. https://doi.org/10.1039/D1TC00072A

The Formation of Ice Crystals in the Laboratory and the Atmosphere. Vincent J. Schaefer Chemical Reviews **1949** 44 (2), 291-320 DOI: 10.1021/cr60138a004

FIG. 13. Supercooled bubble in which ice crystals are growing

Textured microcapsules through crystallization. Wilson-Whitford, S., R.; Jaggers, R., W.; Longbottom, B., W.; Donald, M., K.; Clarkson, G., J.; and Bon, S., A., F. ACS Applied Materials & Interfaces, 13(4): 5887-5894. **2021**.

structure of DBCC, (c) Crystal structure of DBCC down a-axis of the lattice, (d) down b-axis, (e) down c-axis.

Inversion tests of organogels (a) 1 wt.% DBCC in dodecane (b) inversion of DBCC in dodecane (c) 20 x light microscopy of 1 wt. % DBCC in dodecane (100 μ m) (d) SEM 1 wt. % DBCC in dodecane (10 μ m).

Total DCM evaporation causes DBCC crystallization, forming an armor around the droplet (c) Droplet immediately following its formation (d) 7 min 27 s, total DCM evaporation (e) 7 min 31 s, DBCC supersaturation (f) 7 min 34 s, completed capsule. Scale bar = $100 \ \mu m$

Light microscopy of textured surface of microcapsules generated by microfluidics (a) Scale bar = $100 \mu m$ (b) Scale bar = $50 \mu m$.

c) Dark-field light microscopy of batch synthesized DBCC spikey capsules . Scale bar = $30 \mu m$ (d) Histograms of batch synthesis capsule sizes for smooth (cross diag.: coral) and spikey (diag. up: green) microcapsules.

(a) Backscatter light microscopy of **polyamide fibre** with adhered capsule. Scale: 100 µm (b-c) SEM microscopy of polyamide. Scale: 100 μ m and 5 μ m (d) Backscatter light microscopy of **polyester fibre** with adhered capsules. Scale: 100 µm (e-f) SEM microscopy of polyester. Scale: 100 µm and 10 µm (g) Backscatter light microscopy of **cotton fibre** with adhered capsules. Scale: 100 µm (h-i) SEM microscopy of cotton. Scale: 100 μ m and 10 μ m.

(a) Photograph of drying 100 mm2 cotton squares following dipping (b) 1 mm2 quadrant of dried cotton square viewed by backscattered light microscopy.

e) Column plots of fiber adhesion of smooth (cross diag.: coral) and spikey (diag. up: green). Also shown, adhesion pre (diag. down: teal) and post-wash (cross normal: purple) column plots of smooth and spikey capsules on cotton squares

@bonlab

Textured microcapsules through crystallization. Wilson-Whitford, S., R.; Jaggers, R., W.; Longbottom, B., W.; Donald, M., K.; Clarkson, G., J.; and Bon, S., A., F. ACS Applied Materials & Interfaces, 13(4): 5887-5894. 2021.

SUPRACOLLOIDAL CHEMICAL ENGINEERING

THANK YOU FOR LISTENING

THE UNIVERSITY OF WARWICK